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Abstract— The lack of realistic haptic feedback has become 

a significant barrier to achieve realization in virtual reality. If 

an object is to be reproduced in the haptic dimension, it's 

essential to analyze the object behavior for mechanical inputs. 

Nevertheless, prior studies have considered model-based 

approaches to model the behavior of the real object for 

reconstruction, and the conventional spring-damper model was 

the most widely used. However, proper object identification is 

crucial in accurate haptic object modeling for reconstruction. 

Thus, this paper proposes an AI-based approach using a 

nonlinear regression algorithm, Support Vector Regression 

(SVR). AI algorithm predicts the object’s response for motion 

parameters by analyzing the nonlinear responses from the 

object extracted through a sensorless sensing system based on 

Disturbance Observer (DOB) and Reaction Force Observer 

(RFOB). Furthermore, the viability of the proposed approach is 

demonstrated by comparing it to the conventional model-based 

approach. 

Keywords— haptic information, virtual reality, Disturbance 

Observer, force response, virtual object reconstruction, Artificial 
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I. INTRODUCTION 

In the ever-evolving world of technology, realistic haptic 
feedback takes ceaseless importance to achieve realization in 
virtual reality [1]. Nevertheless, most studies are still lagging 
in creating the pure experience of touch feedback, and thus, 
they fail to develop the objects’ actual perception in the haptic 
dimension.  

Haptic information is bilateral and involves action and 
reaction. The reaction from an object includes not only motion 
and force information but also its impedance. Thus, the real 
contribution of all these factors should be evaluated and 
understood from the real environment for precise object 
identification for reconstruction.  

Numerous studies have employed model-based 
approaches in defining the behavior of the object on contact 
and utilized those to simulate haptic sensation [2]-[4]. Many 
studies have acknowledged the conventional spring-damper 
model to model the real object [2]-[4]. Consequently, the 
behavior of the object impedance was predefined with the aid 
of stiffness and viscosity whose functionalities were assumed 
as constant or exponential or polynomial [2] which contradict 
the real behavior of the object impedance [5]. Researchers 
have also utilized the mass-spring-damper model by 
integrating mass with the spring-damper model to define the 
object behavior. Hence, the object behavior was primarily 
identified as a spring-damper while ignoring its nonlinear 
behavior of responses [5]. Despite its invalidity [5], the spring-
damper behavior was considered to interpret interaction with 
the virtual object and thereby deduced the interaction forces 

that occur when touching the virtual object in the haptic 
rendering algorithm [4].  

Moreover, the impact of learnt force on reproduction 
needs much attention and still, haptic studies merely consider 
only motion data. Force information was used with the motion 
information to improve the quality of the grasp performed by 
the strain gauge-based cyber glove [4]. However, the force 
magnitudes were measured using force sensors regardless of 
their drawbacks such as signal noise, narrow bandwidth, 
complicity, non-collocation, and instability [6], [7]. To 
overcome these problems, Kouhei Ohnishi et al. have 
introduced a sensorless force control with a broad bandwidth 
realized using Disturbance Observer (DOB) [8], [9] and 
Reaction Force Observer (RFOB) [6], [10]. The motion-
copying system (MCS) has been developed based on DOB 
and RFOB to reproduce force and position information saved 
in motion-data memory by bilateral teleoperation [11]. 
However, the MCS simply playback haptic information using 
motion saving and loading functionalities and it has ignored 
the reconstruction phase of the virtual object. Thus, this 
system was only capable of reproducing saved position and 
force information while losing generalization.  

However, recent studies have integrated machine learning 
and deep learning techniques to achieve faster and accurate 
results. A Convolutional Neural Network (CNN) has been 
used to estimate path by combining depth information and 
grasping motion towards the object in a motion reproduction 
system [12]. Hence, these researchers have reproduced 
grasping force through kinematics equations by analyzing 
motion data abstracted using depth sensors. Thus, they have 
considered vision information to identify the object and 
analyze motion data ignoring the real potential of sense of 
touch. A neural network has been used to estimate external 
forces from motion parameters in a model-independent neural 
network force observer [13]. Despite the drawbacks, force 
sensors were used in the training phase of the neural network 
to measure contact forces [6], [7]. A nonlinear regression 
model, Support Vector Regression (SVR) has been used to 
infer the haptic force positions in unseen stimulation locations 
on the 3D structure to achieve haptic sensation through 
learning deformation patterns [14]. However, the force 
measurements of this study have also relied on strain gauges 
despite their issues [6], [7]. 

Hence, it is evident that identifying the real object 
behavior is critical for object reconstruction in the haptic 
dimension. Therefore, this paper proposes an object 
identification approach based on AI for haptic object 
reconstruction. Thus, the AI-based approach using the SVR 
algorithm is presented to predict the force response by 
learning haptic information extracted through the DOB and 
RFOB based sensorless sensing system. 



II. METHODOLOGY 

The reconstruction of the virtual haptic object depends on 
how well the object is identified by incorporating its actual 
nonlinear behavior and consequently how well the object is 
modeled to mimic the actual behavior of the object. Hence, 
two object identification approaches can be recognized for 
reconstruction along with the proposed approach. 

• Model-based approach. 

• AI-based approach. 

Since the AI-based approach relies on data, it is essential 
to collect enough data to develop the AI model. Thus, the 
research procedure followed two phases as illustrated in Fig. 
1. 

• Abstraction phase. 

• Reconstruction phase. 

 

Fig. 1. Representation of a) Abstraction phase and b) Reconstruction phase 

of the haptic object. 

 

Fig. 2. Object identification approaches for reconstruction: Model-based 

approach and AI-based approach. 

The system abstracts motion and force information for a 
specific force command applied to the object during the 
abstraction phase. Haptic information was gathered relevant 
to one object throughout this phase, and that object used on 
contact by the end effector of the linear motor was a sponge. 
During the reconstruction phase, a virtual object was 
developed using abstracted haptic information. Two separate 
virtual sponge objects were reconstructed to replicate the 
actual object behavior corresponding to each of these 
approaches. Fig. 2 compares the proposed AI-based approach 
to the conventional model-based approach.  

All parameters used in this paper are shown in Table I. 

A. Abstraction phase 

The abstraction phase involves the acquisition of motion 
information with the corresponding responses from the object. 
Force sensors have been used in conventional force control to 
detect force despite their issues. However, force sensors can 
only detect external forces at their installed position, and the 
sensor itself adds mass or inertia to the system. Therefore, a 
DOB and RFOB based sensorless approach was employed to 
detect vivid force sensation with broad bandwidth. DOB was 
used to achieve robust force control, and RFOB was used to 
measure reaction force from the object.  

TABLE I.  NOMENCLATURE 

Symbol Description 

𝑀   Motor mass  

𝑀𝑛   The nominal value of motor mass  

𝐾𝑓   Motor force constant  

𝐾𝑓𝑛   The nominal value of force constant 

𝐼𝑎
𝑟𝑒𝑓

   Motor current  

𝐵   Viscosity coefficient  

𝑔𝑑𝑖𝑠   Cut off frequency of DOB  

𝑔𝑟𝑒𝑐   Cut off frequency of RFOB  

𝑥   Compression depth  

�̇�   Velocity  

𝐹𝑚   Generated motor force  

𝐹𝑑𝑖𝑠   Disturbance force  

𝐹𝑒𝑥𝑡   Reaction force  

𝐹𝑖𝑛𝑡   Interactive force  

𝐹𝑓   Static friction  

𝐹𝑐𝑚𝑑   Force command  

𝐹𝑟𝑒𝑠   Force response  

𝐹𝑎𝑐𝑡   Action force  

𝐾𝑝   Proportional gain of PID controller  

𝑔𝑣  Velocity filter constant 

�̂�𝑑𝑖𝑠   Estimated disturbance force  

�̂�𝑒𝑥𝑡   Estimated reaction force  

𝐹𝑟𝑒𝑠
𝑐𝑎𝑙   Calculated force response  

𝐹𝑟𝑒𝑠
𝑝𝑟𝑒𝑑

   Predicted force response  

 

The disturbance observer observes the disturbance force of 
the system without using force sensors [8], [9]. This force can 
be derived as in (1) and (2) using equations from (3) – (7). 

 
𝐹𝑑𝑖𝑠 = 𝐹𝑒𝑥𝑡 + 𝐹𝑖𝑛𝑡 + (𝐹𝑓 + 𝐵�̇�) +

(𝑀 − 𝑀𝑛)�̈� + (𝐾𝑓𝑛 − 𝐾𝑓)𝐼𝑎
𝑟𝑒𝑓  () 

 𝐹𝑑𝑖𝑠 = 𝐾𝑓𝑛𝐼𝑎
𝑟𝑒𝑓

− 𝑀𝑛�̈� () 

The generated motor force, 𝐹𝑚 can be express as shown in 
(3).  
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 𝐹𝑚 = 𝐾𝑓𝐼𝑎
𝑟𝑒𝑓

 () 

By applying the dynamic equation to the linear motor:  

 𝐹𝑚 − 𝐹𝑙 = 𝑀�̈� () 

Load force, 𝐹𝑙 can be expressed as in (5).  

 𝐹𝑙 = 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡 + (𝐹𝑓 + 𝐵�̇�) () 

Since parameters, 𝐾𝑓  and M are subjected to variations 

and estimation errors, they can be re-written in terms of 
nominal values and variations.  

 𝑀 = 𝑀𝑛 + Δ𝑀 () 

 𝐾𝑓 = 𝐾𝑓𝑛 + Δ𝐾𝑓 () 

Then, the estimated disturbance force is derived by 
passing disturbance through the low pass filter and 
suppressing noise due to the differentiator as in (8).  

 �̂�𝑑𝑖𝑠 =
𝑔𝑑𝑖𝑠

(𝑠+𝑔𝑑𝑖𝑠)
𝐹𝑑𝑖𝑠 () 

The DOB is modified as RFOB to estimate the reaction 
force by identifying the internal disturbance in the system 
without using a force sensor [6],[10]. Thus, RFOB acts as a 
virtual force sensor in estimating only the reaction force. The 
estimated reaction force can be represented as in (9) and (10).  

 

�̂�𝑒𝑥𝑡 =
𝑔𝑟𝑒𝑐

(𝑠+𝑔𝑟𝑒𝑐)
(𝐾𝑓𝑛𝐼𝑎

𝑟𝑒𝑓
+ 𝑀𝑛𝑔𝑟𝑒𝑐�̇� −

(𝐹𝑖𝑛𝑡 + 𝐹𝑓 + 𝐵�̇� + (𝑀 − 𝑀𝑛)�̈� +

(𝐾𝑓𝑛 − 𝐾𝑓)𝐼𝑎
𝑟𝑒𝑓

) − 𝑀𝑛𝑔𝑟𝑒𝑐 �̇�

 () 

 �̂�𝑒𝑥𝑡 =
𝑔𝑟𝑒𝑐

(𝑠+𝑔𝑟𝑒𝑐)
𝐹𝑒𝑥𝑡 () 

The block diagrams of the function of disturbance force 
observation by the DOB and the function of reaction force 
estimation by the RFOB are shown in Fig. 3. Fig. 4 shows the 
overall block diagram of the abstraction phase with the force 
control mechanism using DOB and RFOB.  

B. Reconstruction phase 

The reconstruction phase involves developing the 
respective virtual object model by identifying object behavior 
through each approach using motion information. Hence, 
compression depth and filtered velocity were considered to 
analyze the object’s response through both approaches.  

A labeled dataset of 5,200,000 samples was extracted for 
a ramped force command applied on the sponge object. 
However, a reduced version of the dataset was used in this 
analysis. Fig. 5 depicts the variation of recorded haptic 
information relative to time and motion parameters. The 
obtained structured dataset was divided into two subsets for 
training and testing as mentioned in Table II. The training set 
was used to build the virtual object model by identifying the 
relationship between force information and motion 
parameters. The testing set was used to test the virtual 
representation by comparing the actual values with the 
estimated values. Moreover, these two datasets are separate 

datasets that aren’t composed of any data common to both 
datasets. Hence, during the training process, the test set 
samples were not considered. 

 

Fig. 3. Block diagrams (a) Disturbance Observer (b) Reaction Force 

Observer. 

 

Fig. 4. Force controller based on DOB and RFOB.  
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Fig. 5. a) Force profile on the object over motion parameters b) Force 

profile on the object over time c) Compression depth profile on the object 

over time d) Velocity profile on the object over time.  

TABLE II.  TRAIN - TEST DATASETS 

Dataset No. of samples 

Training dataset   24000  

Testing dataset   28000  

 
The performance of the object identification approaches 

was evaluated using regression metrics and thereby, decided 
the best approach in object identification for reconstruction. 
Thus, regression metrics considered for model performance 
evaluation used in this study are, 

• 𝑅2 score 

• Mean absolute error (MAE) 

• Mean squared error (MSE) 

• Root mean squared error (RMSE) 

1) Model-based approach: The most commonly used 

spring-damper combination was considered in this analysis. 

Therefore, force response was defined by considering the 

combinational effect of the forces from the spring, and the 

damping force. Equation (11) denotes the relationship 

between the force response and the motion parameters. 

 𝐹𝑟𝑒𝑠 = 𝐹𝑘 + 𝐹𝑏 = 𝑘𝑥 + 𝑏�̇� () 

The environment impedance has been considered as a 
function of its motion parameters in spring damper modeling. 
Hence, the values of stiffness coefficient, 𝑘, and the damping 
coefficient, 𝑏  were obtained assuming their behavior as 
constant for the training data set using the curve fitting tool in 
Matlab. Then, these values were used to calculate force 

responses, 𝐹𝑟𝑒𝑠
𝑐𝑎𝑙  for the test set samples. 

2) AI-based approach: The force response from the 

object was derived considering compression depth and 

velocity parameters in the conventional spring-damper 

modeling. Thus, the extracted features for the AI model to 

predict the force response are, 

• Compression depth (𝑥) 

• Velocity (�̇�) 

Fig. 6 manifests the proposed AI-based approach using the 
SVR algorithm. 

 

Fig. 6. SVR Model 

The range of all features was normalized using min-max 
scaling to achieve higher accuracy. Equation (12) is the 
normalization formula used.  

 𝑦′ =
𝑦−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
 () 

where 𝑦′ represents the normalized value of the feature 𝑦.  
𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥  are the minimum and the maximum values of 
the feature. This normalization procedure was carried out 
separately on the training and testing datasets.  
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The proposed AI-based approach is based on multi-label 
regression that uses supervised learning. Hence, a nonlinear 
regression model, Support Vector Regression (SVR) [15], 
[16] was used to build the virtual sponge object. The SVR 
algorithm is a powerful kernel-based learning algorithm and a 
very effective method for learning complex nonlinear 
functions. For the given training data {(𝑎1, 𝑏1), …, (𝑎𝑛 , 𝑏𝑛)} 
∁ 𝒜 x ℝ and where 𝒜 ∈ ℝ2  denotes the space of the input 
features, the SVM model can be defined as is (13). 

 𝑓(𝑎, 𝑤) =< 𝑎, 𝑤 > +𝑑 () 

where vector 𝑤 ∈ 𝒜  , scaler 𝑑 ∈ ℝ  and <. , . >  denotes 
the dot product in 𝒜 . The SVR algorithm has a convex 
optimization and the minimization function of the SVR 
algorithm can be represented as in (14). 

 𝐿 = 𝑀𝐼𝑁 
1

2
||𝑤||2 + 𝐶 ∑ (𝜉𝑖 +  𝜉𝑖

∗)𝑛
𝑖=1  () 

subjected to,   

 𝑏𝑖−< 𝑎𝑖 , w > − 𝑑 ≤  𝜀 + 𝜉𝑖  

 < 𝑎𝑖 , w > +𝑑 − 𝑏𝑖 ≤  𝜀 +  𝜉𝑖
∗  

where 𝜀 is the precision, 𝜉𝑖 , 𝜉𝑖
∗ ≥ 0 are slack variables and 

𝐶>0 is a constant which determines the trade-off between the 

regression model’s complexity. The SVR algorithm uses 
kernel functions to transform the feature vectors to another 
space to overcome nonlinearity. The popular kernel function, 
radial basis function (RBF) was used in this study as shown in 
(15). 

 𝐾(𝑎𝑖 , 𝑎𝑗) = exp(−𝛾||𝑎𝑖 − 𝑎𝑗||2) () 

where 𝛾 >0 is the kernel coefficient for RBF. The 
hyperparameters of the SVR model were tuned to define the 
SVR model that is performing well on the training dataset. 
Then, the defined model was used to train the SVR model for 
the sponge object identification using the training dataset. 
Finally, the trained SVR model was used to predict the force 

responses, 𝐹𝑟𝑒𝑠
𝑝𝑟𝑒𝑑

for the testing dataset. The python sklearn 
[17] implementation of the SVR algorithm was used in this 
study. 

III. EXPERIMENTAL SETUP 

 

Fig. 7. Experimental setup for the abstraction of haptic information.  

The experimental setup used in the acquisition of haptics 
information is shown in Fig. 7. The research focused on object 
identification for reconstruction by replicating 1 DOF haptics 
interaction. Thus, a linear motor was implemented as the 
actuator and a linear encoder was used to obtain compression 
depth. A sponge was considered as the object in identification 
for reconstruction in this experiment. The control software for 

this system was programmed using C language on mbed 
microcontroller analog/digital I/O | Model 826. The values of 
experimental parameters are listed in Table III. In this study, 
the initial position of the actuator was set on the surface of the 
object and obtained relevant motion information. 

TABLE III.  EXPERIMENTAL PARAMETERS 

Symbol Value 

𝑀𝑛   0.46 kg  

𝐾𝑓𝑛   24 N/A  

𝑔𝑑𝑖𝑠   300 rad/s  

𝑔𝑟𝑒𝑐   300 rad/s  

𝐾𝑝   2  

𝑔𝑣   30  

IV. RESULTS AND DISCUSSION  

The spring-damper model was the model-based approach 
considered in this analysis. Thus, the best matching values for 
stiffness and viscosity were generated through the curve 
fitting tool in Matlab by assuming their behavior as constant. 
Consequently, the relationship between the force response and 
motion parameters was deduced as exhibited in (16). The 
profile of force response was simulated using the curve fitting 
tool from the training dataset as shown in Fig. 8 and the 
surface of the generated function can be identified in the same 
figure. 

 𝐹𝑟𝑒𝑠 = 1624𝑥 + 2331�̇� () 

The calculated force responses for the test set samples 
were obtained using the relationship shown in (16). Therefore, 
all calculated force responses of the test dataset will lie on the 
same plane which is generated by the function. The graphs in 

Fig. 9 show how the calculated force responses, 𝐹𝑟𝑒𝑠
𝑐𝑎𝑙  using the 

spring-damper model vary from the actual force responses. 

 

Fig. 8. Simulated force response from the spring-damper model.  

In the AI-based approach, the SVR algorithm was chosen 
to build the virtual object model. Since the SVR method is 
convexing, it guarantees to produce a global solution. 
However, the relationship between motion parameters and 
force response cannot be simply defined as the spring damper 
modeling in the AI-based approach. Hence, the kernel 
function was used to transform the nonlinear input feature 
space into another space to identify the nonlinear behavior. 
The hyperparameters of the algorithm were tuned to adjust the 
algorithm along with its kernel function to have higher 
performance on the training set. Table IV lists the specific 
hyperparameter values which were chosen to define the SVR 
model to achieve better performance on the training dataset.  



 

Fig. 9. Spring-damper model results for a sponge object a) Calculated force 
response over time b) Calculated force response over compression depth c) 

Calculated force response over motion parameters. 

The trained SVR model was used to generate predictions for 
the test set samples in the AI-based approach. The graphs in 

Fig. 10 explain how the predicted force responses, 𝐹𝑟𝑒𝑠
𝑝𝑟𝑒

 using 
the SVR model deviate from the actual force responses.  

TABLE IV.  HYPERPARAMETERS OF SVR MODEL 

Hyperparameter Value 

Kernel Type   ‘rbf’  

Kernel coefficient for ‘rbf’ (𝛾)  0.002  

Regularization parameter (C)   0.1  

Precision (𝜀)  0.0001  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑅𝑀𝑆𝐸 () 

 

Fig. 10. SVR algorithm results for a sponge object a) Predicted force 
response over time b) Predicted force response over compression depth c) 

Predicted force response over motion parameters.  

The performance of both models was evaluated using 
regression matrics. Table V outlines the comparison of these 
regression matrices for the two approaches considered and 
Fig. 11 summarizes the same. The virtual model should have 
a higher 𝑅2  score and lower regression losses denoted by 
MAE, MSE, and RMSE for the model to perform well. When 
comparing 𝑅2 score values of both approaches, it seems that 
the traditional model-based approach performed better than 
the AI-based approach. However, the 𝑅2 score is not a more 
reliable metric to be considered in the nonlinear analysis 
because the 𝑅2  score reflects the correlation that indicates 
linearity. Hence, RMSE was considered in this analysis and it 
was discovered that the AI algorithm was performing better 
than the spring-damper model in replicating the object’s 
behavior. Furthermore, as shown in Fig. 12 the SVR algorithm 

(a)

(b)

(c)

(a)

(b)

(c)



is capable of identifying the object up to an accuracy of 82.7% 
in sense of RMSE as derived in (17). Thus, the AI-based 
approach is better than the model-based approach in 
evaluating the nonlinear behavior of responses of the object 
which cannot be interpreted using simple mathematical 
representation. Therefore, it is visible that AI-based virtual 
object modeling is the best approach to identifying the object 
for reconstruction. 

TABLE V.  COMPRESSION OF REGRESSION METRICS 

Regression 

Metric 

Spring Damper 

model 
SVR algorithm 

𝑅2 score   0.81   0.75  

MAE   0.71   0.15  

MSE   0.81   0.03  

RMSE   0.90   0.17  

 

Fig. 11. Comparison of Regression Metrics for virtual object models. 

 

Fig. 12. Comparison of Accuracy for virtual object models. 

V. CONCLUSION 

This paper proposed an AI-based approach for replicating 
the real behavior of the sponge object while incorporating its 
nonlinear behavior of responses. In the AI-based approach, a 
simple mathematical interpretation cannot be defined as in the 
spring-damper model-based approach. Hence, the AI-based 
approach would be preferable in identifying the object’s 
nonlinear behavior, which cannot be defined using a simple 
mathematical representation. Thus, a nonlinear regression 
algorithm, SVR was chosen to develop the AI model for the 
object.  The SVR algorithm uses kernel functions to transform 
the nonlinear feature vectors to another space and the ‘rbf’ 
kernel was used in this study. Therefore, the SVR algorithm 
predicted the force response using motion parameters that are 
compression depth, and velocity by incorporating the 
nonlinear behavior of the object. 

The proposed AI-based approach was compared with the 
most commonly used spring-damper model-based approach. 
Hence, regression metrics of both virtual object models were 
evaluated, and discovered that the AI-based approach 
performed better than the model-based approach in virtual 

object reconstruction. Moreover, the proposed AI-based 
approach identified the object with an accuracy of 82.7% in 
sense of RMSE. Thus, it clarifies that the AI-based approach 
outperforms the traditional model-based approach in 
identifying object behavior. Therefore, more promising results 
can be achieved when reproducing realistic haptic feedback 
using reconstructed haptic objects identified through AI-based 
approaches than model-based approaches. 
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